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THE JOURNAL OF FINANCE VOL. XXXII, NO. 3 JUNE 1977 

PITFALLS IN THE APPLICATION OF DISCRIMINANT ANALYSIS 
IN BUSINESS, FINANCE, AND ECONOMICS 

ROBERT A. EISENBEIS* 

I. INTRODUCTION 

OF THE APPLIED DISCRIMINANT analysis papers that have appeared in the business, 
finance, and economics literature to date, most have suffered from methodological 
or statistical problems that have limited the practical usefulness of their results. 
While it is not true that the statistical problems are unique to economics or finance, 
it does seem that the nature of the subject matter and data are such that one can 
expect to encounter statistical difficulties more frequently than in many other 
application areas. The problems are of several different types, among which are 
difficulties with (1) the distributions of the variables, (2) the group dispersions, (3) 
the interpretation of the significance of individual variables, (4) the reduction of 
dimensionality, (5) the definitions of the groups, (6) the choice of the appropriate a 
priori probabilities and/or costs of misclassification, and (7) the estimation of 
classification error rates. The purpose of this paper is to discuss these problems of 
application of discriminant analysis techniques. Ample references are made to the 
literature for examples to illustrate the pitfalls. Finally, a brief discussion of future 
problems and prospects for statistical research on the application of the techniques 
is provided. 

II. THE DISTRIBUTION OF THE VARIABLES 

The standard discriminant analysis procedures assume that the variables used to 
describe or characterize the members of the groups being investigated are multi- 
variate normally distributed. In practice, deviations from the normality assump- 
tion, at least in economics and finance, appear more likely to be the rule rather 
than the exception. Violations of the normality assumptions may bias the tests of 
significance and estimated error rates. Hence, it is of interest to determine whether 
the assumption holds and what effects its relaxation may have on the tests and on 
the classification. In the applied literature, the problem of testing for the 
appropriateness of the distributional assumption has been largely ignored. This is 
due in part, one would presume, to the fact that most available normality tests are 
for univariate and not multivariate normality.' Malkovich and Afifi (1973) discuss 
several tests for multivariate normality, but these have not yet been used in 
discriminant analysis problems. Equally important, however, is that if the normal- 

* Associate Research Division Officer, Division of Research and Statistics, Board of Governors of the 
Federal Reserve System. The author wishes to thank Drs. Joseph F. Sinkey, Jr. and Edward I. Altman 
for their helpful comments on this paper. However, all errors and omissions are the responsibility of the 
author. This work was completed while the author was Assistant Director of Research, FDIC. 

1. For discussions and review of this literature see Shapiro, Wilk and Chen (1968), or Kowalski 
(1970), and more recent papers by D'Agostino (1973), and Shapiro and Francia (1972). 
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ity hypothesis is rejected, one is then faced with the practically impossible task of 
deriving the appropriate alternative joint probability density functions. The tactic 
which most researchers have adopted is simply to be satisfied that the more 
standard discriminant procedures yield reasonable approximations and proceed as 
if the normality assumption held. 

The theoretical and statistical work dealing with the normality problems have 
been of two major types. Some researchers have investigated alternative schemes 
where specified types of nonnormality hold, while others have evaluated the 
robustness and bias introduced in the standard procedures when the normality 
assumptions are violated in known ways. In the case of the former, Hills (1967), 
Linhart (1959), and Chang and Afifi (1974) derived and examined classification 
methods where some or all the variables were discrete. In finance, and in particular 
in the development of credit scoring and bond rating schemes, many of the factors 
reflecting important attributes of the data tend to be categorical in nature. When 
continuous and discrete variables are mixed, procedures are proposed to split the 
samples based on the values of the discrete variables. Then standard discriminant 
analyses were employed on the subdivided samples. This procedure was used 
recently in an industrial and bond rating study by Pinches and Mingo (1975). 
Chang and Afifi (1974) have investigated Bayes' rules for the simple two-group 
case with one dichotomous variable and with one and with several continuous 
variables. Similar to Linhart (1959), their results indicate that it is appropriate to 
use the dichotomous variable to split the samples and then construct for the pairs 
of samples separate discriminant functions and rules. 

In examining the robustness of the standard techniques when nonnormality 
holds Gilbert (1968) compared the performance of the linear discriminant function 
when applied to data where all the variables were discrete with the performance of 
two logit models and with a model which assumed mutual independence of the 
variables. She concluded that there was only a small loss in predictive accuracy 
using the linear function and that as the number of variables increased, the results 
should be quite stable.2 More recently, a different aspect of the problem was 
studied by Lachenbruch, Sneeringer, and Revo (1973); they investigated the 
robustness of both linear and quadratic procedures for three specific nonmul- 
tivariate normal distributions. These distributions were transformations of nor- 
mally distributed variables so that the true classification errors were known. The 
three distributions were the log normal, the logit normal, and the inverse hyper- 
bolic sine normal. The authors concluded that the standard linear procedures may 
be quite sensitive to nonmultivariate normality. However, they also suggest that the 
problems may not be as great when the distributions were bounded, which was the 
case with the logit normal distribution, as compared with unbound distributions. 
They found that the estimated overall classification error rates were not affected as 
much as the individual group error rates. They also observed that even attempts to 
adjust for inequalities of the group dispersions by using quadratic classification 

2. If one simply applies the standard techniques with the dichotomous variables as Gilbert (1968) did, 
it is quite easy to show that the assumption of equal dispersions is violated. Hence, linear techniques are 
always inappropriate when dichotomous variables are included in the analysis. This problem is 
described in detail in the next section. 
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rules did not significantly improve the results, and in many cases they were worse. 
The authors suggest that data should be first transformed, if possible, to approxi- 
mate normality, and then standard tests for the equality of the group dispersion 
should be employed to determine whether linear or quadratic techniques should be 
used. 

The use of certain transformations to transform data prior to estimating dis- 
criminant function has been a common procedure. The natural log and standard 
log are the most frequently used transformations. Pinches and Mingo (1973), Bates 
(1973), Carleton and Lerner (1969), Horton (1969), all used such transformations in 
their studies. This is because many of the variables employed, such as firm size, 
loan size, population, etc., tend to be highly skewed with a few large values and a 
number of small values. Hence, a much greater proportion of the values lie to the 
left of the variable mean than to the right. If a distribution is skewed to the right, 
the effect of the natural log transformation is to make the marginal distribution of 
the variable more symmetric and, of course, it is bounded from below by zero.3'4 
This procedure has intuitive appeal because it does make the distribution more 
symmetric, and probably more normal. But the cautions noted previously from the 
work of Lachenbruch, Sneeringer, and Revo (1973) still apply. 

As a final point, it should also be recognized that the application of a tranforma- 
tion may change the interrelationships among the variables and may also affect the 
relative positions of the observations in the group.' In the case of the log 
transformation, there is also an implicit assumption being accepted where such a 
transformation is employed. That is, the transformed variables give less weight to 
equal percentage changes in a variable when the values are larger than when they 
are smaller. If, for example, the variable being transformed was firm size, the 
implication would be that one does not believe that there is as much difference 
between a $1 billion and a $2 billion size firm as there is between a $1 million and 
a $2 million size firm. The percentage difference in the log will be greater in the 
latter than in the former case. 

III. EQUAL VERSUS UNEQUAL DISPERSIONS 

A second critical assumption of classical linear discriminant analysis is that the 
group dispersion (variance-covariance) matrices are equal across all groups. Relax- 
ation of this assumption affects not only the significance test for the differences in 
group means but also the usefulness of the so-called "reduced-space transforma- 
tions" and the appropriate form of the classification rules. 

Little attention has been given to the effects of unequal dispersions on the 
hypothesis test of the equality of group means and related significance tests. 
Anderson (1958) presents an exact test for the equality of the means for the limited 
case when the sample sizes are equal. He provides an approximate test for the case 

3. It should be noted that while the marginal distributions of a multivariate normal distribution are 
normal, simply making a variable's marginal distribution normal may not necessarily make the joint 
distribution more normal. 

4. The disadvantage is that negative values cannot be transformed and are precluded. 
5. Considerable attention is usually given in regression models about the implications that transforma- 

tion of the variables have for the model being estimated. No attention has been given in discriminant 
analysis to this problem, but the same types of consideration apply. 
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when there are unequal sample sizes [see also Eisenbeis and Avery (1972)]. To date, 
however, such tests do not appear to have been programmed, or at least they have 
not been made readily available to researchers. More recently, Holloway and Dunn 
(1967) investigated the robustness of Hotelling's T2 for the two group case with a 
particular type of inequality.6'7 Drawing upon the work of Scheffe [1959], Hopkins 
and Clay [1963], and Ito and Schull [1964], their conclusion is that the robustness 
of the test depends upon both the number of variables and relative sample sizes in 
the groups. For the univariate case, the test seems to be affected very little as long 
as the sample sizes are equal or nearly equal, especially for larger samples. With 
widely disparate sample sizes, the actual significance level is greater than the 
hypothesized level, and therefore, the null hypothesis would be rejected more 
frequently when the means were in fact equal. When the number of variables 
increases, the significance level also increases and the sensitivity to unequal sample 
sizes increases. According to Holloway and Dunn (1967), "Equal sample sizes help 
in keeping the level of significance close to the supposed level, but do not help in 
maintaining the power of the test." 

Considerable attention has been given by Cooley and Lohnes (1962), (1971), 
Rulon, Tiedeman, Tatsuoka and Langmuir (1967), and Tatsuoka (1971), among 
others, to the advantages of reduced-space discriminant analysis which can be used 
to reduce the original m dimensional variable test space to an r dimensional 
problem.8'9 The transformation is selected as the matrix of eigenvectors associated 
with the roots of the determinantal equation IT- yWI = 0, which has r nonzero 
roots.'0 The reduction in dimensionality is possible because the linear transforma- 
tion from test to reduced space preserves relative linear Eucledian distances among 
observations and leaves the significance tests and classification results unaffected. 
But this property holds if and only if the group dispersion matrices are equal. If the 
dispersions are not equal, then the transformation to reduced space is no longer 
distance perserving. The result is a warping of the relative positions of the 
observations in reduced space which affects both the significance tests and changes 
the resulting classifications. Lohnes (1961) has examined a portion of this problem 
by comparing linear test and linear reduced-space classifications when the group 
dispersions are unequal. However, his results are difficult to assess and are not 
particularly useful since he does not compare the linear results with the appropriate 
quadratic test space results. Since the assumption of equal dispersions is used in 
transforming the data from test to reduced space, the differences he observes are 
due solely to the warping of the reduced-space transformations in response to the 
unequal dispersions in his data. 

6. With little loss in generality, they considered population of the form N1(O,I) and N2(M,8.I). 
Because most of their examples had equal eigenvalues this tends to limit their conclusions somewhat. 

7. See Porebski (1966), for a discussion of the relationships among the various statistics used in 
multivariate analysis. 

8. r equals the minimum of m and one minus the number of groups (i.e., k - 1). 
9. Moreover, as m increases, the reduced-space variables are more likely to be multivariate normal 

because of the Central Limit Theorem [Lohnes (1961)]. 
10. T is the total deviation sums of squares matrix and W is the pooled within groups deviation of 

squares matrix. See Eisenbeis and Avery (1972). 

This content downloaded from 209.180.2.13 on Wed, 5 Nov 2014 09:35:08 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Pitfalls of Discriminant Analysis in Business, Finance, and Economics 879 

Considerably more attention has been given to the effects of unequal dispersions 
on the classification procedures and results. It can be shown that the equality of the 
dispersions yields the standard linear classification rules. Unequal dispersions 
imply that a quadratic rule should be used. Gilbert (1969) has investigated and 
compared the effects on classification error rates and conditional probabilities if a 
linear rule is used (assuming equal dispersions) when, in fact, the dispersions are 
unequal. Only the two group case with known parameters was examined. The 
results indicate that significant differences can occur which are directly related to 
the differences in the dispersions, the number of variables and the separation 
among the groups. Agreement between the two procedures declines as the 
differences between the disperions and the number of variables increase. The 
further apart the groups are for given dispersions, the less important are the 
differences between the linear and quadratic results. Gilbert (1969) also provides 
tables which can serve as a useful guide in judging how the linear and quadratic 
rules may deviate for problems involving groups with particular parameter 
characteristics. 

In a more recent study, Marks and Dunn (1974), investigated the performance in 
the two-group case of Fisher's linear discriminant function, the best linear function 
of Clunies-Ross and Riffenburgh (1960), (1960), and Anderson and Bahadar 
(1962), and the quadratic function. Sample estimates of population parameters 
were used and the overall probability of misclassification was used as the perfor- 
mance criterion. The authors conclude that for large samples the quadratic proce- 
dures performed better, the closer the groups were to each other, and as the 
number of variables increased. For small samples, they indicated that the quadratic 
performed worse for small numbers of variables and reasonably similar dispersion 
matrices, and this performance deteriorated further as the number of variables 
increased. However, as the dispersions became more dissimilar, the quadratic rules 
dominated. These results seem quite reasonable when one considers what is 
involved in constructing the sample functions and classification rules. For the 
two-group, m variable linear case 2m variable means and m2 elements of the 
pooled within groups dispersion matrix must be estimated. This represents a total 
of m(2 + m) parameters. In the quadratic case, 2m(1 + m) parameters are involved 
which is nearly twice the number as in the linear case. For fixed but small samples, 
the resulting degrees of freedom of the pooled within groups dispersion matrix used 
in the linear rules are substantially larger than for the individual group dispersions 
used in the quadratic rules. When the dispersions are similar, this leads to relatively 
more efficient linear classification results which are not swamped by the effects of 
averaging the group dispersions. However, as the differences in the dispersions 
increase, the efficiency of the linear parameter estimates begins to become 
dominated by the effects of the unequal dispersions. Marks and Dunn (1974) 
provide some tables indicating at what points the trade-offs between sample size 
and inequality of the dispersions occur. However, their tables are of limited 
practical usefulness because they investigated only a few specific types of disper- 
sion inequality. It is not clear how general their conclusions are. 

A number of the applied studies using quadratic classification techniques which 
have recently appeared in the literature tend to support the tentative observations 
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of Gilbert (1969). 1 For examples, in his classic three-group Iris problem, Fisher 
(1936) used linear procedures. Recently, Bisenbeis and Avery (1972) have shown 
that although the hypothesis of the equality of the dispersion matrices was rejected 
beyond any measurable level of significance, the use of quadratic classification 
rules, as shown in Table 1, yielded identical results to those using the linear rules. 
The reason for this becomes quite clear when the estimates of the group overlaps 
are examined in Table 2.12 The group means are so far apart that there is almost no 

11. See Gilbert (1975), Gilbert (1974), Eisenbeis and Avery (1972), Eisenbeis and McCall (1971), Bates 
(1973), Lane (1972), Eisenbeis and Murphy (1974), Sinkey (1975), for recent examples of the use of 
quadratic procedures. 

12. See Cooley and Lohnes (1962) or Eisenbeis and Avery (1972) for explanation of the derivation of 
these tables. 
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significant overlap among the groups."3 In a study of interlocking ownership and 
directorates among mutual savings banks and commercial banks in New 
Hampshire by Eisenbeis and McCall (1971), there was considerable overlap be- 
tween the groups. In this two-group, two-variable problem, quadratic procedures 
significantly improved the classification results over the linear results as is shown in 
Table 3. Figure 1 shows the plots of the observations in (the two-variable) in test 
space with the commercial bank real-estate-loan ratio being plotted on the x axis 
and the time-and-savings-deposit ratio on the y axis. The linear and quadratic 
classification boundaries are shown as well. The variance of the real-estate-loan- 
ratio was greater in the unaffiliated group than in the affiliated group while the 
opposite held for the time-and-savings-deposit ratio. Equally important was the 
covariance which was negative in the unaffiliated group and positive in the 
affiliated group. The linear procedure, of course, averaged out these fairly diverse 
dispersions, whereas the quadratic classification rules used this additional informa- 
tion resulting in the improvement in the classification of the unaffiliated group. 

TABLE 1 

CLASSIFICATION RESULTS-IRIS DATA 

Linear Classification Results Quadratic Classification Results 
Predicated Groups' Predicted Groups' 

Iris Iris Iris Iris Iris Iris 
Actual Groups Total Setosa Versicolor Virginica Setosa Versicolor Virginica 

IrisSetosa 50 50 0 0 50 0 0 
(100.00) (100.00) (0.00) (0.00) (100.00) (0.00) (0.00) 

Iris Versicolor 50 0 48 2 0 48 2 
(100.00) (0.00) (96.00) (4.00) (0.00) (96.00) (4.00) 

Iris Virginica 50 0 1 49 0 1 49 
(100.00) (0.00) (2.00) (98.00) (0.00) (2.00) (98.00) 

TABLE 2 

EXPECTED GROUP OVER-LAP IRIS DATA* 

Percent Overlap Assuming Percent Overlap Assuming 

Unequal Dispersions Equal Dispersions 

Equal Dispersions Iris Iris Iris Iris Iris Iris 

Groups Setosa Versicolor Virginica Setosa Versicolor Virginica 

Iris Setosa 100.0000 .2058x 10-8 .1927x 10-32 100.0000 .1401 x 10-'5 .1013x 10-34 

Iris Versicolor .1150x 10-65 100.0000 .7830 .1401 x 10-'5 100.0000 1767 
Iris Virginica 0.0** .1311 100.0000 .1013x 10-34 .1767 100.0000 

** less than 10-76 
* The table is read as follows: the means of the row group lie closer to the means of the column group than x% of 

the column group's observations. 

13. A similar result was found by Altman who reestimated his original bankruptcy model Altman 
(1968) using quadratic procedures and the results were virtually identical. 
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TABLE 3 

CLASSIFICATION RESULTS AND RULES-NEW HAMPSHIRE BANK DATA 

Linear Classification Results Quadratic Classification Results 
Predicted Groups' Predicted Groups Actual 

Groups Total Unaffiliated Affiliated Unaffiliated Affiliated 

Unaffiliated 16 12 4 15 1 
(100.00) (75.00) (25.00) (93.75) (6.25) 

Affiliated 33 6 27 6 27 
(100.00) (18.18) (81.82) (18.18) (81.82) 

Related to the work of Gilbert (1968) who investigated the performance of the 
linear function when all the variables were discrete, it can be shown that if a 
dummy or dichotomous variable is included in the variable set, the hypothesis of 
equal dispersions will most likely always be rejected. This again implies that 
quadratic and not linear classification procedures should be used.14 For example, 
consider a Bernoulli variable X that takes on only two values {0, 1} with the 
probability P(X = 1) =p and P(X = 0) = 1-p = q. Then the mean of X in group 1 is 
Iux,i =PI and the variance is 2 

1=pl(l_pl)=pi *q,. For linear discriminant analy- 
sis to be appropriate in any problem including the variable X, the variance 
elements in the group dispersion matrices for X must be equal. That is, 2 

=2 

But this will hold only if (1) the mean in group one equals the mean in group two 
(i.e. PI =P2) in which case X is not an important discriminator in itself, or (2) if 
q2 =Pi which represents a very limiting case.15 Otherwise, if p1 P2 orp1 # q2, then 
a2 1 22 Therefore, if these two variance elements of the dispersions are unequal, 
then I # 2, and quadratic rather than linear classification should be employed. 

A priori there is little reason to believe that any one application area is likely to 
be more susceptible to this problem than any other, except to the extent that 
categorical variables may arise more frequently in certain types of problems than in 
others. The available evidence does indicate, however, that rejection of the hy- 
pothesis of equal group dispersions may have a significant and undesirable impact 
on the test for the equality of group means. More importantly, depending upon the 
sample sizes, number of variables, and differences in the dispersions, use of linear 
classification rules when quadratic rules are indicated may have drastic effects on 
the classification results. Logically then, the test for the equality of the dispersion 
matrices should precede both the test for the equality of group means and the 
estimation of classification errors.16 

IV. INTERPRETATION OF THE SIGNIFICANCE OF INDIVIDUAL VARIABLES 

One of the most widely misunderstood aspects of discriminant analysis relates to 
the problem of determining the relative importance of individual variables. Unlike 

14. Note that Gilbert (1968) used only linear instead of quadratic procedures. Hence, her results 
reflect a mixture of problems of violation of not only the normality assumption but also the equality of 
dispersion assumption as well. 

15. See Kshirsagar (1972) for a discussion of discrimination when there are zero mean differences of 
which this is a special case. 

16. See Cooley and Lohnes (1962), (1971), Eisenbeis and Avery (1972), Box (1949) for the tests. 
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the coefficients in the classical linear regression model, the discriminant function 
coefficients are not unique; only their ratios are.'7 Therefore, it is not possible, nor 
does it make any sense to test, as is the case with regression analysis, whether a 
particular discriminant function coefficient is equal to zero or any other value. 
That is, there is no test for the absolute value of a particular variable. It is this 
aspect of discriminant analysis that may be more upsetting to economists than to 
others. It seems to be the nature of the behavioral hypotheses generated in 
economics and finance that they require that the influence of specific variables be 
isolated and quantified in a cardinal sense. Regression analysis seems particularly 
well suited for such problems, since it does allow one to test, ceteris paribus, 
whether specific coefficients are significantly different from a particular value. 

A number of methods have been proposed in discriminant analysis which 
attempt to determine the relative importance of individual variables.'8 Five such 
methods were considered by Eisenbeis, Gilbert, and Avery (1973). These were to 
rank variables on the basis of (1) their univariate F-statistics, (2) their scaled 
discriminant function coefficients which were weighted by the appropriate diagonal 
elements of the pooled within groups deviation sums of squares matix, (3) stepwise 
forward methods based on the contribution to the multivarite F-statistic, (4) 
stepwise backward methods as in (3), and (5) a conditional deletion method which 
removed each variable in turn from the m-variable set, with replacement, and 
ordered variables according to the resulting reduction in overall discriminatory 
power as measured by the (m - 1) variable F-test.'9 Finally, a sixth method has 
been suggested in Mosteller and Wallace (1963) and Joy and Tollefson (1975) 
which weights each pairwise test space coefficient by the difference in the group 
means divided by the differences in the mean discriminant scores.20 It represents 
the contribution of the ith variable to the Mahalanobis distance between the group 
means. 

The problem with the first two methods rests with the fact that the variables are 
treated independently. Cochran (1964) has shown, however that seemingly insig- 
nificant or unimportant variables on a univariate basis may be very important 
when combined with other variables. In fact, he concluded that any negative 
correlation and extremely high positive correlations increase the discriminatory 
owner of a variable set while moderate or low positive correlations may not help 
much if at all. Some authors in applying discriminant analysis, such as Edmister 
(1972), Pinches and Mingo (1973), and Zumwalt (1975), excluded highly correlated 
variables because of their belief that "multicollinearity" was harmful. In fact, 
multicollinearity is a sample property that is largely an irrelevant concern in 
discriminant analysis except where the correlations are such that it is no longer 
possible to invert the dispersions matrices.2' 

17. See Kshirsagar (1972), Eisenbeis and Avery (1972), Ladd (1966), Anderson (1958) or Lachenbruch 
(1975) for discussions of this point. 

18. See Cooley and Lohnes (1962), (1971), Eisenbeis and Avery (1972), Joy and Tollefson (1975), and 
Mosteller and Wallace (1963). 

19. Weiner and Dunn (1966) examine four methods including (1), (2), and (3) above. 
20. In the two-group case, where bi is the coefficient of the ith variable, the measure of relative 

percentage contribution is [bi(Xil - X AXI- X2)'B]. 

21. Eisenbeis, Gilbert, and Avery (1973), Altman (1968), and Altman and Katz (1975) also provide 
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The three other methods (3), (4), and (5) listed above are all conditional methods 
which do take into account correlations among the variables. In the case of the 
stepwise forward and backward methods, the relative contribution of a given 
variable is measured against an increasing (decreasing) number of variables. For 
example, in the stepwise forward method, the second variable to enter is the second 
most important variable, given that the first is already included. The conditional 
deletion method would seem to have the greatest appeal since the relative impor- 
tance of each variable is conditional based on the inclusion of all other variables. 
Interestingly, Kshirsagar (1972) shows that this conditional deletion method has 
more than intuitive appeal. It was stated previously that while discriminant func- 
tion coefficients are not unique, their ratios are; hence, their coefficients are unique 
up to a factor of proportionality.22 Therefore, while it is not appropriate to test 
whether a given coefficient is significantly different from either zero or some other 
constant a, it does make sense to test whether the ratio of two coefficients is equal 
to a, i.e., 

b. 
Ho: = bj 

When a =0, Kshirsager (1972) demonstrates that this is equivalent to the testing 
whether the addition of a given variable to an m-set significantly increases the 
overall discriminatory power of the set.23 This is the essence of the conditional 
deletion method which ranks the m variables according to the discriminatory 
power each variable adds to the overall set given that the other m - 1 variables have 
already been included. Kshirsagar (1972) also shows in the two-group case when a 
dichotomous dependent variable is being regressed on the independent variables to 
take into account the computational equivalence between regression and dis- 
criminant analysis [see Eisenbeis and Avery (1972), Anderson (1958), Ladd (1966)], 
that regression coefficient t-tests can also be used to test this hypothesis. Hence, 
they may be interpreted identically to the conditional deletion tests for the 
significance of the contribution of the variable given that the others have been 
included. The t-tests do not indicate whether a particular "coefficient" itself is zero 
because the coefficients are not unique.24 Meyer and Pifer (1970) and others fall 
into the trap of assuming that the regression t-statistics are valid for determining 
the significance of individual coefficients. 

The sixth ranking method proposed by Mosteller and Wallace (1963), which 
measures the gross contribution of a variable to the overall Mahalanobis distance 
between the group means, offers little to recommend it. First, the weights are 
difficult if not impossible to interpret because they (1) are signed (e.g. plus or 
minus), (2) can be greater than one, and (3) do not sum to one. Second, the method 
is not readily generalizable to more than two groups. 

A final comment is that all the methods for investigating the relative importance 

further empirical evidence that seemingly unimportant variables on a univariate basis may be important 
discriminators in a multivariate context. 

22. See Eisenbeis and Avery (1972) for Kshirsagar (1972) for proofs. 
23. If Ho: a = O is true, then it is true for all bj, j= ij,..., m and j # i. 
24. The test does indicate whether the coefficient is zero "relative to all the rest." 
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of variables that have currently been examined have assumed equal dispersions.25 
Rejection of that hypothesis implies that these methods are subject to the same 
limitations as the tests for the significance of the difference in group means. 

V. DIMENSION REDUCTION 

The two principal ways for reducing dimensionality in discriminant analysis are to 
eliminate (1) those variables or (2) those discriminant functions (in the reduced 
space K-group case) that do not contribute significantly to the overall ability to 
discriminate among groups. Objective assessment of the usefulness of particular 
dimension reducing procedures rests upon a knowledge of the trade-offs involved 
between the alternative reducing criteria and an understanding of how the reducing 
criteria relate to the research goals in performing a discriminant analysis. This can 
be particularly important for problems in business, economics, and finance where it 
is often possible to generate a large number of variables which need to be pared 
down to some manageable size. 

To date, the dimension reducing methods used have focused solely on determin- 
ing whether a variable or function contributed significantly to the Wilk's lambda or 
related statistics used in testing hypotheses about the equality of group means. (See 
Eisenbeis and Avery (1972), Eisenbeis, Gilbert, and Avery (1973) or Weiner and 
Dunn (1966).) Furthermore, they have assumed equal group dispersions.26 The 
methods used have been based upon the univariate significance tests and the 
various stepwise procedures mentioned in Section IV. These are appropriate if the 
research goal is to maximize the separation among groups while minimizing the 
number of variables or functions used. If, however, the goal is to construct a 
classification scheme, then use of the aforementioned methods may not leave the 
classification results unaffected, even if seemingly insignificant variables or di- 
mensions are eliminated. Eisenbeis and Avery (1973) have examined in an heuristic 
manner the relationship between the significance tests for the equality of group 
means and the problem of investigating group overlap through classification 
methods.27 They argue that the existence of statistically significant differences 
among group means, especially when the sample sizes are large, does not convey 
much if any useful information about the ability to construct a successful classifica- 
tion scheme. They suggest, following Cooley and Lohnes (1962), that chi-square 
methods of describing group overlap be used.28 

25. Except for the scaled-discriminant function method, the procedures mentioned in Section II for 
adjusting the test statistics could be directly applied to modify the statistics used to investigate the 
relative importance of variables. 

26. For this reason, use of dimension reducing procedures when the group dispersions are unequal is 
subject to the same limitations noted in Section II pertaining to the significance tests of the equality of 
group means. 

27. Joy and Tollefson (1975), Frank, Massy and Morrison (1965), and Morrison (1967) also touch 
upon this point. 

28. Using the following chi-square measure x2 (Xg-Xh)'S; 1(Xg - Xh) which is distributed with 
m degrees of freedom, the resultant significance level a indicates that the means of group g lie closer to 
the means of group h than a- 100% of the members of group h. If the group dispersions are equal, then 
the pooled within group dispersion matrix, Sw, is used in the x2, otherwise the individual dispersion 
matrix, Sh, is used. 
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Eisenbeis and Avery (1972) compare the classification results using one of two 
discriminant functions based upon a three group, twelve variable, security analysis 
program originally studies by Smith (1965). The analysis of the significance of the 
roots is shown in Table 4 and the one and two linear discriminant function 
classification results are shown in Table 5. The data clearly indicate that although 
the second root was statistically insignificant according to the usual standards, the 
omission of the second dimension significantly affected the classification results in 
two ways. 

TABLE 4 

SIGNIFICANCE OF THE ROOTS IN THE SECURITY ANALYSIS PROBLEM 

Root Value of Percent of Total Variance Value of Chi Degrees of Significance 

Number Root Accounted for by Root Square Statistic Freedom Level (Percent) 

1 3.945974 83.462 40.76363 13 0.010407 
2 0.7818336 16.537 14.72988 11 19.520000 

TABLE 5 

COMPARISON OF ONE AND Two DIMENSIONAL LINEAR CLASSIFICATION RESULTS-SECURITY 

ANALYSIS PROBLEM 

Predicted Groups"2 

Actual Groups One Eigenvector Used Two Eigenvectors Used 

Investment Trading Speculative Investment Trading Speculative 

Group Total Group Group Group Group Group Group 

Investment 1 1 7 4 0 11 0 0 
(100.000) (63.636) (36.364) (0.000) (100.000) (0.000) (0.000) 

Trading 11 1 10 0 0 9 2 

(100.000) (9.091) (90.909) (0.000) (0.000) (81.818) (18.182) 

Speculative 11 0 0 1 1 0 2 9 

(100.000) (0.000) (0.000) (100.000) (0.000) (18.182) (81.818) 

1. Percentages are shown in Parentheses. 

2. Equal A Priori probabilities were assumed. 

First, the overall accuracy fell off from 87.9% to 84.8%. More importantly, there 
were radical changes in the individual group error rates. Thus, if classification was 
a primary goal, dropping of even an insignificant dimension or variable may be 
undesirable. 

Further work is needed in exploring the links between the significant tests and 
classification results. The available evidence suggests, however, that it may be 
unwise to drop dimensions or variables without first exploring in more detail what 
the possible effects may be. If classification accuracy is a primary goal, then the 
criterion for keeping or deleting variables and dimensions should be related to the 
overall efficiency of the classfication results. Therefore, the results using all 
variables should be compared with those based upon various subsets of variables. 
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It would seem inappropriate in such instances to discard variables such as Pinches 
and Mingo (1973), Edmister (1972), Meyer and Pifer (1970), Orgler (1970), Zum- 
walt (1975), and Bates (1973) did without first examining the overall classification 
results to determine what the effects or "costs" of dimension reduction really are. 
The implication is that concern for dimension reduction should "follow" and not 
precede the development and validation of alternative classification schemes as has 
been the case in most of the applied literature. 

VI. THE DEFINITIONS OF GROUPS 

Discriminant analysis procedures assume that the groups being investigated are 
discrete and identifiable. However, numerous examples occur in the literature 
which either violate this assumption or deal with classification schemes which limit 
the practical usefulness of the empirical results. 

Perhaps the most extreme case occurs when an inherently continuous variable is 
segmented and used as a basis to form groups. Walter (1959) arbitrarily divided 
firms into quartiles based upon the distribution of their earnings price ratios and 
then used discriminant analysis to distinguish between firms in the first and fourth 
quartiles. Haslem and Longbrake (1971) constructed similar groups for banks 
based upon the distribution of their profitability.29 There are four basic problems 
with this grouping criterion. First, the groups are arbitrary and not truly distinct. 
There is certainly nothing magical about quartiles as compared, for example, with 
deciles as the grouping criterion. In fact, an infinite number of different sets of 
groups could be formed and a given observation could be a member of each of 
several groups. Hence, neither the groups nor group membership were really 
distinct. Second, for classification purposes, two other groups, the second and third 
quartiles, were omitted. The discriminant analysis classification rules could only 
compare whether a given observation appeared relatively more like a first or fourth 
quartile firm and make assignments accordingly. The possibility of belonging to the 
second or third quartile would be excluded. Firms from that portion of the 
population would be forced into the first or second quartiles. Third, attempts to 
assess error rates for the two group model using samples drawn only from the first 
and fourth quartiles of the population are not particularly meaningful or realistic 
since in order to select the sample, one must already know which firms are from 
the first and fourth quartiles, but this is precisely what one is trying to predict. At 
the very least, a four group model should be estimated with each quartile represent- 
ing a separate group. Finally, such problems do not really lend themselves to 
predictive discriminant analysis because they involve forming groups on the basis 
of a variable or factor that is, in fact, observable at the same time that the 
"independent" or "explanatory" variables are. For example, if one observes a 
firm's level of profits, it can be assigned to the proper quartile without reference to 
the other variables. Hence, there is no need to use other variables to predict in 
which quartile the criterion variable should be expected to lie. 

As a practical matter, the only time it really makes sense to form groups based 

29. Other studies with similar problems are Klemkosky and Petty (1973), Norgaard and Norgaard 
(1974), and Shick and Verbrugge (1975). 
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upon the distribution of a particular variable is if natural breaks or discontinuities 
appear. Otherwise, segmenting an inherently continuous variable effectively dis- 
cards information about the relationships between the independent or explanatory 
variables and the grouping criterion variable that might more appropriately be 
captured in a regression or other causal model. In most instances, regression and 
not discriminant analysis is the more appropriate technique for such problems. 

The problem of omitting groups or portions of populations has occurred to a 
greater or lesser degree in other studies such as Altman (1968), and similarly in 
Edmister (1972) where only relatively small firms were included. Joy and Tollefson 
(1975) have given particular attention to this problem. They emphasize that in 
order to obtain useful and interpretable results, particularly with respect to clas- 
sification, it is important that the populations sampled to estimate discriminant 
functions and classification error rates correspond to the populations generating 
the new observation to which the model is to be applied. Divergence between the 
two population sets has been a common failing with certain types of application. 
For example, in the development of credit scoring systems, the objective is usually 
to develop models to discriminate between those new loan applicants who are and 
are not likely to default on their loans. Characteristically, however, loan perfor- 
mance data with which to estimate the discriminant function are not available on 
the population of all applicants, but rather on only the subset of applicants that 
were originally granted loans. Omitted are data on that portion of the population 
who applied for loans but did not receive them, some of which may or may not 
have defaulted. Technically, a model constructed in such a fashion should not be 
applied to new loans which are drawn from a broader population. Rather, a more 
appropriate use is as an internal loan review device since it was developed from, 
and the estimates of error rates are applicable to, the population of loans that were 
granted. The practitioner should keep in mind that the estimates of the error rates 
do not apply to new loan applicants. As a practical matter, however, if one is 
willing to assume (1) that the initial loan review process screened out the "bad" 
loan tail of the distribution of potential default loans and (2) relatively few of the 
good loans have been eliminated, it is likely that the resultant or screened 
populations of good and bad loans would have (1) closer centroids and (2) 
probably greater overlap than the true population. Hence, the estimated error rates 
from the "screened" populations are likely to represent conservative estimates of 
the true error rates. 

A more extreme case of group identification occurred in the paper by Adelman 
and Morris (1968). They arbitrarily grouped countries into three groups according 
to their prospects for economic development. Eight criteria were used to construct 
the groups, and then discriminant functions were estimated using some of these 
same grouping variables as independent variables. The original samples were 
reclassified and group assignments were made based upon that classification. 
Finally, a second discriminant analysis was performed. Not surprisingly, the final 
results were quite acceptable and impressive. Of course, the authors were not really 
performing a discriminant analysis, but rather a crude cluster analysis was being 
employed to group the countries based upon their similarities. 

Another common grouping problem in business and finance is to take arbitrarily 
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defined groups such as bond classes as in Pogue and Soldofsky (1969), Pinches and 
Mingo (1973), Carleton and Lerner (1970), and Altman and Katz (1975), bank 
examiner capital adequacy ratings as in Dince and Fortson (1972), or problem 
bank groups as in Stuhr and Van Wicklen (1974), and Sinkey (1975). Here, the 
group definitions appear discrete as far as the researcher is concerned, in the sense 
that someone else has already made the grouping decision. However, the possibility 
still exists that the original assignments may have been in error. In such cases, the 
best that the researcher can hope to do is to replicate or simulate the original 
grouping decision. The effect of such grouping schemes is to introduce an addi- 
tional source of error into the assessment of any classification results. That is, one 
can never be sure whether an observation has been misclassified (or correctly 
classified) because of overlaps among the groups or errors in the original assign- 
ment by an examiner, bond rater, etc. Lachenbruch (1966) has shown in the equal 
dispersion, two-group case that when each of the group assignment errors are 
random and equal, there is no effect on the classification errors. Otherwise, as long 
as the assignment errors are (1) small or (2) not too different from each other, there 
will not be a significant effect on the estimated error rates for both large and small 
samples. The assumption of random assignment errors is not particularly realistic, 
so Lachenbruch (1974) has also investigated two models with nonrandom assign- 
ment errors. As might be expected, the estimated error rates using the more 
common methods are biased and unreliable. 

In summary, the best problems for discriminant analysis appear to be those in 
which the group definitions are distinct and non-overlapping as in the Fisher Iris 
problem. Every effort should be made to avoid arbitrary groupings such as those 
employed by Walter (1959) or Adelman and Morris (1968). 

VII. THE SELECTION OF THE APPROPRIATE A Priori PROBABILITIES AND 
SAMPLES 

The standard discriminant analysis classification rules incorporate a priori prob- 
abilities to account for the relative occurrence of observations in different popula- 
tions in the universe and costs to adjust for the fact that some classification errors 
may be more serious (e.g. costly) than others. The importance of the a priori 
probabilities and/or costs of misclassification have been grossly overlooked, partly 
due to the lack of computer programs that easily incorporate them into the rules. 
As a result, most authors, at least up until 1973-74, ignored error costs and simply 
assumed that group membership was equally likely. 

It can be easily shown by example that unless the groups are equally likely, the 
estimated error rates assuming equal priors might bear little relationship to what 
one might expect in the population. Consider the example in Table 6 taken from a 
recent business loan study which shows six group quadratic classification results 
assuming equal a priori probabilities and estimated population a priori probabili- 
ties. The overall expected probability of misclassification was 51.1 percent for the 
equal a priori probability case as compared with 45.5 percent for the unequal a 
priori probability case. More important, however, than the overall improvement 
between the unequal and equal a priori cases was the fact that some of the 
individuar group error rates shifted radically. For example, 88% of group 2 was 
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correctly assigned assuming equal priors whereas 100% were misclassified in the 
unequal priors case. This illustrates that one can be drastically misled about the 
effectiveness of his classification results if the correct priors are not employed. 

In the absence of knowledge of the population priors, it has become common 
practice to use sample proportions as estimates. This is appropriate provided the 
pooled data represent a random sample from the population. Otherwise, of course, 
the resulting classifications would only minimize the classification errors in the 
sample rather than providing evidence on the population error rates. It is for this 
reason that Meyer and Pifer (1970) in their trial and error method found that a 
50-50 rule minimize their classification errors. They simply discovered that they 
had equal members of observations in each sample. 

Using independent estimates of the population priors relieves the researcher of 
the burden of worrying that the pooled sample represents a random sample from 
the population. It does not, however, relieve him of the problem of assuming that 
his samples are representative of the groups being investigated. Alternative sampl- 
ing methods such as the paired sample methods of Meyer and Pifer (1970) or 
Sinkey (1975) are representative of non-random schemes that have been used. 
Nonrandom methods where certain factors are controlled (such as bank size, 
regulatory statutes, number of branches, and location in the study by Sinkey (1975) 
are appropriate for investigating the importance of certain variables but not for 
estimating classification error rates. To the extent that the control variables are not 
independent of the other included variables one would expect the dispersions and 
group means in the control sample to be different from a random sample drawn 
from the publication. If this is true, then the resulting classification rules would be 
different, and even use of appropriate priors would not yield valid estimates of the 
population error rates. An alternative method for such a study would have been to 
draw random samples from both groups, include the control variables as the a 
variables in the conditional Wilk's lambda statistics shown in Eisenbeis and Avery 
(1972) or Eisenbeis, Gilbert, and Avery (1973), and then examine the other 
variables. 

Attempts to employ discriminant analysis in a time series context raise additional 
questions about the appropriate selection of a priori probabilities which have not 
yet been addressed in either the applied or theoretical literature. The first arises in 
studies where observations from a single period in time are used to form classifica- 
tion rules and make predictions about group membership in a future time period or 
periods. To the extent that the relative expected occurrences of the groups in the 
population may vary from period to period, it is not at all obvious what the 
population priors should be or how they should be estimated. For example, in the 
problem bank study of Sinkey (1975), the number of problem banks has varied 
quite significantly from year to year from a low of around 150 in some years to 
more than 349 in early 1976. Under such circumstances, it is not clear whether it is 
more appropriate to use the relative group frequencies from a given year as 
estimates of the a priori probabilities, or to attempt to use some average of past 
frequencies. In the absence of theoretical guidance, it would seem that the research 
design and goals should determine the method to be used. Clearly, in the problem 
bank study, the expected frequencies of problem and nonproblem banks are not 
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independent of the state of the economy. During unstable times, then, a simple 
average of past years' frequencies might tend to understate the expected frequen- 
cies of the problem group. 

A second aspect of the time series problem can be found in studies such as 
Pinches and Mingo (1973), Altman (1968), or Gilbert (1974) where the data on the 
groups are obtained by pooling observations from different time periods. This is 
usually done when one of the groups occurs relatively infrequently and pooling is 
necessary to get a large enough sample with which to work. Again, it is not clear 
what the appropriate a priori probabilities are or how they should be estimated. In 
such instances, gross sample proportions are probably inappropriate. Selection and 
estimation of the priors should be geared to the type of classification statements 
that the researcher wishes to make. For example, if a one period classification is to 
be made, then it would seem reasonable to use an average of the relative 
frequencies over several time periods to estimate the priors. On the other hand, if 
predictions are to be made over several time periods such as Gilbert (1974) did, 
then it may be more appropriate to pool data over the same length of time to 
estimate frequencies. 

The standard discriminant analysis classification rules have been derived from 
minimizing loss functions of the form (for the two group case) 

M = P(l1 |2)?T2 + P(2 1 l)?T 

L = C(l 1 2)-P(1 2) J2 + C(2 1 I)-P(2 1 I)-?Tl 

which take into account a priori probabilities (e.g. ?Ti's) and costs of misclassifica- 
tion (e.g. C( g h)).30 

For example, the linear form of the two group rules is3' 

Assign to group 1 if 

X'B- + ?2)'B <ln C(2 1) 

and the quadratic form is 

Assign to group 1 if 

X 1 -1Y-2 -1)X-2(X12' -1 - '2)x - 1)X + ; XI ,- 

Aln 11C-21nC(l 12)2 

However, little or no attempt has been made to explicitly incorporate costs into 
the models that have been developed to date. Dince and Fortson (1972) rational- 
ized ex post the use of their cut off point based upon a poll of bank supervisors 
from whom they obtained subjective cost estimates. Finally, both Sinkey (1975), in 

30. C( g I h) is the cost of misclassifying an observation as a member of group g given that it came 
from group h. P(g I h) is the conditional probability of misclassification. 

31. See Eisenbeis and Avery (1972), Cooley and Lohnes (1962), (1971), or Anderson (1958) for 
derivations and formulations of these rules. 

This content downloaded from 209.180.2.13 on Wed, 5 Nov 2014 09:35:08 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Pitfalls of Discriminant Analysis in Business, Finance, and Economics 893 

his study of problem banks, and Meyer and Pifer (1970) in developing their model 
to identify potential failing banks did discuss the development of rules that would 
maximize the returns from applying their screening model. However, these dis- 
cussions were only general in nature. In neither study did they attempt to explicitly 
specify or estimate the model they proposed nor did they apply it in the empirical 
portion of their paper. As such, we must conclude that the general procedures for 
incorporating costs of misclassification into the classification procedures have been 
developed, but they have not yet been explored in the applied literature. 

VIII. ASSESSMENT OF CLASSIFICATION ERROR RATES 

If one of the main purposes in conducting a discriminant analysis is to construct a 
classfication scheme, then a central problem involves assessing the performance of 
the estimated rules. It has been well publicized in the economics and finance 
literature by now (due in part to a paper by Frank, Massy, and Morrison (1965)) 
that reclassification of the original sample used in constructing the classification 
rules as a means to estimate expected error rates leads to a biased and overly 
optimistic prediction of how well rules would perform in the population. A number 
of alternative methods have been suggested, and evaluated, to estimate classifica- 
tion errors." The alternatives are basically of three types: those using samples to 
estimate error rates, those using the assumption of normality, and those using 
jackknife procedures. Each of several such methods is briefly described in Table 7 
and the limitations and strengths of each are noted. 

Both Lachenbruch and Mickey (1968) and Cochran (1968) have evaluated some 
or all of these methods. As might be expected, the original sample method (1) and 
D method (4) performed poorly. The U or U methods appear to be the best for 
small samples. Overall, the OS method seemed the best. However, it should be 
noted that the U (9), original sample (1), and holdout (2) methods are most easily 
generalized to more than two group problems as well, as the unequal dispersion 
cases.33 In this respect then, the U (9) method would appear to be superior based 
upon current evidence, especially when coupled with its applicability to small 
samples and large dimension problems.34 In fact, it is interesting to note that 
Lackenbruch and Mickey (1968) conclude that the holdout method has no clear 
superiority over the U method. 

IX. SUMMARY AND CONCLUSIONS 

This paper has discussed several of the more common problem areas appearing in 
the anolied discriminant analysis literature. If one had to rank the problems 

32. See Lachenbruch (1967), (1968), (1975), Lachenbruch and Mickey (1968), Frank, Massy, and 
Morrison (1965), Dunn (1971), Dunn and Vardy (1966), Sorum (1973), Hills (1966), Smith (1947), and 
Okamoto (1963). 

33. Eisenbeis and Avery (1972) have programmed the U method for all cases including quadratic 
classification. 

34. For an example of how sample sensitive and biased the original sample method is when compared 
with the U method even relatively large samples, see Eisenbeis and Murphy (1974). Their estimates of 
error rates between the original sample method and the U method in a two group, 12 variable problem 
increased more than 16 and 13 percentage points, respectively. 
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according to severity of their affects on the usefulness of the analysis, it would 
seem that the problems related to classification are the most severe, with the issues 
surrounding the selection of the appropriate a priori probabilities being the most 
important followed in turn by the selection of the appropriate classification rules 
(linear vs. quadratic) and assessment of classification accuracy. In particular, the 
failure to relate the estimates of the a priori probabilities to the population priors 
by, for example, assuming equal priors, in fact limits the ability to make any 
meaningful inferences about the overall performance or accuracy of the classifica- 
tion scheme. Similarly, use of linear classification rules when the group dispersion 
matrices are equal nearly always results in an underassessment of the overall 
classification accuracy of the rules, moreover, there may be significant distortions 
in the individual group error rates. 

Other problems such as nonnormality, the selection of subset variables and 
reducing dimensions, interpreting the significance of individual variables, are not 
as easy to remedy. Until further research is done, one must simply temper the 
conclusions reached by recognizing that the empirical results represent approxima- 
tions that may be significantly biased in many cases. 

There are several remaining problems that have either not been mentioned or 
only briefly touched upon. This would particularly include the important class of 
time series problems that frequently occur in business, economics, and finance. 
These relate to the application of discriminant analysis (1) to prediction one, two, 
or more time periods into the future as opposed to simply predicting the likelihood 
of an event occurring and (2) to samples of data that have been pooled across time 
periods.35 Neither of these have yet been dealt with in the applied or theoretical 
literature. 

In the first type of time series problem, the process by which an observation 
moves from one group to another might reasonably be expected to be a con- 
tinuously evolving one. This suggests that the relationships among the relevant 
variables (e.g. means, variances and covariances) change over time. Hence, the 
appropriate model might be different, both in terms of parameters and variable 
composition, for each separate time period into the future for which prediction is to 
be made. 

In the second type of time series problem, data from several time periods are 
often pooled to make predictions over the same span of time periods (e.g. Altman 
(1968)) or over future time periods (e.g. Pinches and Mingo (1973) or Gilbert 
(1974)). Joy and Tollefson (1975) have dealt with this problem heuristically in their 
discussion of Altman's (1968) work and they suggest that the predictive accuracy of 
his model could not be meaningfully verified by ex post classification of a sample 
selected from the same time period used to develop his model.36 They incorrectly 
view the process of prediction only as making inferences into the future. Hence, 
they state that one should verify the predictive accuracy of a model ex ante using 
data drawn from outside the original sample period. However, if one is interested 
in only predicting whether an event will occur without reference to a particular 

35. These two types of problems have often occurred together. 
36. They state that successful ex post classification merely permits making inferences about the role of 

individual variables. 
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time period (which is usually the case with pooled samples such as Altman's (1973)) 
and one is willing to assume stationarity of the relationship among the variables 
over time, then intertemporal verification is clearly appropriate and meaningful. In 
this context, although Joy and Tollefson (1975) don't explicitly recognize it, 
divergence in ex ante and ex post classification results really constitute a crude test 
of the stationarity hypothesis.37 

In addition to the time series problem, nothing has been said about linking 
discriminant analysis with other procedures such as factor analysis, Cooley and 
Lohnes (1971); principal components, Pinches and Mingo (1973); or regression 
analysis, Tatsuoka (1971). The latter may be particularly important since it relates 
to the investigation of the joint probability of group membership and relative 
performance as a member of a given group. Finally, it has not been uncommon to 
see some researchers make use of a so-called "doubtful" region in classification in 
order to avoid assigning an observation to any group, Rao (1952). Such a proce- 
dure essentially begs the assignment question given that the rules are already 
designed to minimize classification errors. 
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